Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
نویسندگان
چکیده
We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the target’s gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.
منابع مشابه
The Bayesian Low-Rank Determinantal Point Process Mixture Model
Determinantal point processes (DPPs) are an elegant model for encoding probabilities over subsets, such as shopping baskets, of a ground set, such as an item catalog. They are useful for a number of machine learning tasks, including product recommendation. DPPs are parametrized by a positive semi-definite kernel matrix. Recent work has shown that using a low-rank factorization of this kernel pr...
متن کاملGradient-based MCMC samplers for dynamic causal modelling
In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R)...
متن کاملStochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for Bayesian Inference
Gradient-based Monte Carlo sampling algorithms, like Langevin dynamics and Hamiltonian Monte Carlo, are important methods for Bayesian inference. In large-scale settings, full-gradients are not affordable and thus stochastic gradients evaluated on mini-batches are used as a replacement. In order to reduce the high variance of noisy stochastic gradients, [Dubey et al., 2016] applied the standard...
متن کاملStochastic Gradient Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a MetropolisHastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient com...
متن کاملQuasi-Newton Hamiltonian Monte Carlo
The Hamiltonian Monte Carlo (HMC) method has become significantly popular in recent years. It is the state-of-the-art MCMC sampler due to its more efficient exploration to the parameter space than the standard random-walk based proposal. The key idea behind HMC is that it makes use of first-order gradient information about the target distribution. In this paper, we propose a novel dynamics usin...
متن کامل